
Measuring Security

32	 Published by the IEEE Computer Society       n      1540-7993/07/$25.00 © 2007 IEEE       n      IEEE Security & Privacy

Security Strength 
Measurement for 	
Dongle-Protected Software
 

Ugo 
Piazzalunga

Eutronsec 
Infosecurity

Paolo 
Salvaneschi

University of 
Bergamo

Francesco 
Balducci, 
Pablo 
Jacomuzzi, 
and Cristiano 
Moroncelli

Turin 
Polytechnic

Many people consider dongles to be among the 

strongest forms of copy protection, but how much 

security do they actually offer? The model presented 

here aims to monetize the security strength of dongle-

protected software by forecasting the amount of time a 

hypothetical attacker would take to break it.

O ne of the problems with software security is 
the lack of a proper methodology for guaran-
teeing a delivered security measure’s efficacy. 
No governmental office will ever accept a new 

high-traffic river bridge, for example, without some evi-
dence that the bridge can withstand the amount of traffic 
it’s supposed to support. Yet, collecting evidence that a 
piece of software can sustain a defined security load seems 
to be a rare practice. One area in which such practice is 
indeed uncommon is software copy protection—specifi-
cally, copy protection with hardware dongles. 

Although dongles are the top choice for software 
copy protection, they’re typically found only in high-
end, low-quantity software.1 Nevertheless, IDC es-
timates that dongle-protected software generated a 
global revenue of US$117.8 million in 2003,2 and a 
major vendor claims that the use of dongles has so far 
prevented $500 billion in software piracy (see www.
aladdin.com/news/2005/HASP/aladdin_anniversary.
asp). Despite these facts, though, little attention has 
been paid to the actual security that dongles offer.1

This article’s objective is to develop a model for 
measuring the security strength of dongle-protected 
software. We believe such a measure is important be-
cause it can attach a clear, simple, and understandable 
monetization number to security (see www2.sims.
berkeley.edu/resources/aff iliates/workshops/econ 
security/econws/54.pdf and https://buildsecurityin. 
us-cer t.gov/da isy/bsi/ar t icles/bestpract ices/ 
architecture/10.html?branch=1&language=1).

Introduction to dongles
Dongles are USB keys or small boxes attached to the 

host parallel port 
and shipped to 
customers by software vendors along with the software 
they’re meant to protect; the software will run only if 
it “finds” the dongle with which it was shipped. 

As depicted in Figure 1, the dongle’s logical re-
sources include

a symmetric encryption engine and storage for 
symmetric keys (public-key cryptography is rare; 
vendors used to include proprietary cryptographic 
algorithms, but today, they use standard ones);
a persistent memory in which the software can read 
and write;
a unique serial number;
a unique independent software vendor identifica-
tion number, which the vendor assigns to each of its 
dongle customers; and
an access password to unlock the dongle’s functionality.

However, not all of these resources are always pres-
ent—for example, memory might not be available. 

The copy-protected application interacts with the 
dongle and progresses its execution only if the dongle 
answers appropriately. The interaction between the 
software and the dongle takes place through calls to 
the dongle API; Figure 1 explicitly shows the API’s 
core functions, AES-encrypt and read-write-
memory.

Security is a system property: it must be addressed 
at all levels of abstractions and for all components and 
interactions. In this system, the macrocomponents are 
the dongle, the dongle-protected software, and the 
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host running it. The dongle itself is rarely the point of 
attack for hackers (see www.woodmann.com/crackz/
Dongles.htm); rather, the weakest link, which is what 
this article focuses on, is the interaction between the 
software and the dongle API. 

Further details on dongle technology and its 
strengths and limitations appear elsewhere.3,4

Methodology
The methodology we used to develop a security 
strength metric of copy protection through dongles 
consists of several steps: 

Compile a defense pattern catalog (each defense pattern 
includes measurable attributes about the strength of 
defense provided); build an attack pattern catalog (by 
breaking attacks into activities that can be combined 
into full-blown attacks); and construct experimental 
cost-to-break functions5 (these flow diagrams represent 
our experimental knowledge of how to conduct an 
attack in a catalog, the result of which is the measure 
in minutes of how long an attacker will need to suc-
cessfully conduct the attack).
Interrelate these security facets into a combined at-

•

•

tack tree model. An attack tree is an AND/OR graph 
that links possible attacks; at the leaf nodes, this tree 
is augmented with the experimental cost-to-break 
functions. The tree supports the security strength 
computation. 
Execute the model. We compute the security 
strength metric by propagating through the attack 
tree the output values of the experimental cost-to-
break functions. The resulting value is the estimated 
time required to break the existing defenses, given 
a tree of attacks and an implemented set of defenses 

•

Host

Dongle API

Dongle

AES keys: integers
Memory: array
Serial number: integer
Unique ISV ID: integer
Access passwords: strings

AES-encrypt()
read-write-memory()

Protected software

Figure 1. Dongle. This abstract representation shows the dongle’s 
interaction with the software it’s meant to protect.

S andmark,1 a tool developed at the University of Arizona un-
der the supervision of Christian Collberg, gave us the initial 

inspiration for this work. Our work concentrates on the evalua-
tion aspects of security protection, but Sandmark includes only 
standard software engineering metrics. David Nicol2 presents a 
sample of the models applied in security evaluation efforts; the 
attacker-centric approach he describes is similar to our proposal, 
the main differences being the statistical approach and the state 
model he uses as opposed to the deterministic approach and 
attack tree model we adopted. A few models appear in the area 
of networked systems: Stuart Schechter3 applies the regression 
models to security risks; Vibhu Saujanya Sharma and Kishor 
Trivedi4 use the discrete time Markov chains to model security 
risks based on the vulnerability knowledge of its components. 
Our work differs by going to a deeper level than vulnerabili-
ties: we take into account the inner factors that might lead to 
vulnerabilities—that is, applied defenses and how to apply them. 
Mehmet Sahinoglu5 describes a decision-tree model for quan-
tifying risks. Similar to our model, the Sahinoglu approach also 
depends on countermeasures to known threats. However, unlike 
our model, in which we explicitly link the fine-grained details of 
countermeasures to attack efforts, the Sahinoglu model depends 
on a probabilistic lack-of-countermeasure input.

Sean Barnum and Gary McGraw describe the importance of 
knowledge catalogs that compile and share critical software secu-
rity knowledge.6 Our efforts follow their proposal by organizing 
and interrelating software security knowledge specific to dongle 

protection. James Whittaker and his colleagues present extensive 
and detailed attack catalogs, but the interrelation of the attacks 
to the other security facets that we address—defenses, mea-
surements, knowledge-compiled automatic tools—is missing.7 
We go beyond Barnum and McGraw’s proposal by defining a 
model that monetizes software security strength. (Due to space 
limitations, we report here only a limited description of attacks 
and defenses; we refer the reader to Francesco Balducci and his 
colleagues for an extensive and detailed presentation.8)

Security evaluation is an instance of the more general issue 
of measuring software quality. Many different procedures for 
measuring the quality of software products are available in the 
literature. Despite these different approaches, we can identify 
several common components:

a tree of attributes linking low-level measures to high-level 
abstractions;9

an algorithm for generating values of high-level attributes from 
measures;10

a process model (the deliverables of the development phas-
es);11 and
a product model (a model of the software components to be 
measured).11

The attributes tree has been largely explored, from James 
A. McCall’s original work to the ISO 9126 standard;9 the types 
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and their attributes. We compiled the catalogs as 
well as the experimental cost-to-break functions 
into software tools that can automatically measure 
some of the metrics of defense patterns and compute 
the software’s security strength.
Validate the model. The predicted security strengths 
should be consistent with field data, which could 
come either from historical information or through 
specific real attacks on a sample of security systems.

The following sections detail each step of the meth-
odology, the catalogs, and the experimental cost-to-
break functions in the specific context of our study. 

Defense pattern catalog
John Viega and Gary McGraw describe the principles 
behind effective piracy protection in great detail.3 
We must consider these principles—scattering license 
management software, code obfuscation, checksums, 
and responding to misuse—for dongles as well. Table 
1 shows our defense catalog, which includes these 
principles along with the additional dongle-specific 
principle “be sure to talk to the dongle,” which seems 
trivial, but is a common software developer error. The 
first two defenses in Table 1 are based on this prin-
ciple. For each attribute, we indicate if the developed 
tools can provide an automatic measure based on dy-
namic behavior or static analysis.

•

Note that protecting software by using only the 
specific defenses made possible by dongles will result 
in poor overall protection—for example, if we don’t 
scatter our “talk” with the dongle, the hacker just has 
to find the few locations in the code in which the 
software interacts with the dongle and patch them. If 
we apply generic piracy-prevention defense strategies 
as well, the security strength we measure won’t be the 
protection afforded by the dongle per se but the whole 
resulting protection.

We don’t mention the “scattering license manage-
ment” principle here because it’s implicitly included 
in the first two defenses. A high number of caller 
locations means that the AES challenge-response or 
memory-usage defenses are implemented in mul-
tiple locations in the code; thus, the copy-protection 
scheme is well scattered.

Let’s look closer at the defenses and their attributes. 
A detailed description appears elsewhere.6 

AES challenge-response. AES encryption is the ba-
sis for a challenge-response protocol between the host 
software and the dongle. However, it makes no differ-
ence whether the protocol is based on AES or another 
strong cryptographic algorithm because the aim is to 
uniquely identify the key and verify that it’s “real.” The 
challenge must be unpredictable—perhaps generated 
with a secure random number generator.7 A predictable 

of measures have received great research interest as well,11 and 
many variations of the algorithm for composing measurements 
are available.10 We assume that we can execute the measure-
ment procedure (with constraints) at each development phase, 
which in turn assumes the existence of a defined process 
model that delivers a suitable set of documents at the end of 
each phase. 

Despite the large number of contributions, an integrated ap-
proach that evaluates a specific software quality by using product 
models, measurable attributes, inputs, and computed effects is 
uncommon. One exception to this general scarcity of models 
for evaluating the quality of software products is the approach 
presented in the Architectural Trade-off Analysis Method (ATAM) 
with Attribute-Based Architectural Styles (ABAS) and Tactics pat-
terns for software architecture evaluation.12 ATAM defines both 
a process and knowledge support for evaluating and improving 
the design of software architectures. The method is applicable 
to software products in general, is focused on the evaluation of 
software architectures, and is aimed mainly at providing qualita-
tive suggestions to the designer. Our aim is to build quantitative 
models able to predict a specific quality value for a specific class 
of software products.
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challenge would allow a dongle emulation attack.
The attributes of this defense are the number of 

different caller addresses (the different locations from 
which the executable program makes calls to the AES 
function), the challenge distribution (measured by 
making sure that no repetition exists), and the num-
ber of different AES keys. Using as many keys as pos-
sible requires attackers to discover them all.

Memory usage. The second defense is memory usage, 
which is also based on the principle “make sure we’re 
talking to the real key.” It’s effective only against 
hardware- or kernel-level emulators because they 
generally record all the communication between the 
application and the dongle but don’t try to understand 
the semantics. A countermeasure is to write a random 
number to memory and then read it (www.eutron 
infosecurity.info/pub/smartkey/kit/current/Docs/
SmartKeyUserManual.pdf ). If the numbers differ, the 
protected software is “talking” to an emulator. 

Memory usage is also useful against fake libraries, 
but only if the memory content is set at the software 
vendor site, the software depends on correct data to 
be read out of memory, and the hacker has no access 
to the key or its content. Here, the technique is to 
avoid any explicit control of the data read—control is 
implicit in the sense that the program wouldn’t work 
correctly otherwise (for example, we could store the 
values of numeric constants or a function’s binary code 
to be called later). It’s critical to scatter this defense as 
much as possible. This property is measured through 
the number of different caller addresses.

Code obfuscation. Malware writers often deploy ob-
fuscation techniques to protect their programs from 
analysis.8 Similarly, obfuscation can enhance the pro-
tection of software through dongles. A simple way 
to complicate the static analysis of protected code 
is to compress its executable,4 but an increased level 
of sophistication is needed against program analysis 
through a debugger. Anti-debugging techniques1,4 
could partly prevent the use of debuggers against a 
protected application. Christian Collberg and Clark 
Thomborson proposed several methods to transform 
code in such a way so that its semantic is preserved but 
it becomes hard for humans to understand.1 The attri-
bute we listed in Table 1 for this defense is simple and 
automatically measurable: the arguments passed to the 
API functions are searched in the executable file, and 
if found, they aren’t obfuscated.

Static link to dongle library. The protected software 
must be linked either statically or dynamically against 
the dongle library. A dynamic link exposes a clear 
separation between the protected software and the li-

brary: an attacker can simply replace the library with 
a fake one.

Proper error handling. A trivial management of er-
rors might provide attackers with easy hints on how to 
progress in their attacks. In general, the location of the 
code managing the misuse should be separated from 
both the library call’s location and the location of the 
code checking the call’s outcome. Error messages that 
could help attackers should be avoided or at least en-
crypted. Viega and McGraw suggest using decoys to 
misdirect the attacker’s analysis and offer techniques 
to respond to misuse by causing hard-to-trace pro-
gram misbehaviors.3

The first three attributes of this defense measure 
how far away the library calls and the code checking 
their outcomes are from error handling and whether 
the error messages are obfuscated. We also introduce 
two additional attributes: “function used to show er-
ror message” and “time message remains in clear at 
runtime.” When messages are obfuscated, an attacker 
might try to trace calls to standard print functions 
such as C’s printf. The longer the message remains 
deciphered in RAM, the greater the chance for the 
hacker to find it.9

Integrity checks. Software should have ways to check 
its own integrity and the integrity of libraries on 
which it depends. If the integrity check fails, it could 

Table 1. The defense pattern catalog  
and associated attributes.

Defense patterns and attributes Measurement techniques
AES challenge-response
Number of different caller addresses Tool based: dynamic
Challenge distribution Tool based: dynamic
Number of AES keys Tool based: dynamic
Memory usage
Number of different caller addresses Tool based: dynamic
Static link to dongle library
Link type Tool based: static
Code obfuscation
Obfuscated arguments in calls to dongle 
API

Tool based: dynamic + static

Proper error handling
Distance of check from error handling Manual
Distance of library call from error han-
dling

Manual

Obfuscated error messages Manual
Function used to show error message Manual
Time message remain in clear at runtime Manual
Integrity checks
Existence of runtime checksum Manual
Existence of static checksum Manual
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be because someone tampered with the code. Run-
time patching of executable code makes checksums 
on static files ineffective; checksums, therefore, should 
be executed on code in memory.3 If possible, avoid di-
rect comparisons of the computed checksums with the 
correct values because this exposes the expected cor-
rect value (for example, the checksum could be used 
as a key to decrypt the code that runs afterward).

Attack pattern catalog
We assume the “malicious host attack” view of secu-
rity here: we’re considering attacks to “benign” soft-
ware installed on a “malicious” host, which fall into 
four main categories:

Reverse-engineering attacks10 deploy tools such as 
disassemblers to dig into protected code and unpro-
tect it.
Fake library attacks try to divert protected software 
into believing it’s talking to the real dongle while it’s 
actually interacting with a software emulator.
Memory-tampering attacks try to alter the dongle’s 
memory content to circumvent some parts of its soft-
ware protection. The memory could contain critical 
data such as the software license expiration date. 
Kernel-level emulator attacks record and replay all the 
communication between the application and the don-
gle. Due to the stricter security of recent Microsoft 
operating systems, this kind of attack seems to have 
disappeared, so we won’t consider it further here. 

Table 2 lists attack patterns and defines the steps 
comprising each attack (the subattacks).6 The term 
check refers to instructions in the software’s executable 
file that implement copy-protection mechanisms.

•

•

•

•

Remove checks (A) and (B). Attackers might have 
collected any errors raised while executing the soft-
ware; by using a disassembler, they can search for 
them and find exactly where messages are referenced. 
The lines with referenced messages are the starting 
points for hunting checks. Often, compare or test in-
structions followed by jumps in the vicinity of these 
lines are the signature used to locate checks. 

The previous step, if successful, ends by crafting 
(through a hexadecimal editor) the changes needed to 
circumvent the checks. Remove checks (B) is identi-
cal to remove checks (A) except for the strategy used 
to locate the checks: instead of using the error to trace 
back the check, it uses calls to the dongle library. 

Patch at runtime (A) and (B). Patch at runtime (A) 
and (B) differs from remove checks (A) and (B) in the 
way the executable code is modified. Attackers can 
use a patcher that loads the unmodified code and, be-
fore executing it, applies the specified changes to the 
already loaded code.

Memory tampering. Memory tampering might be 
used to attack a protection policy by forcing alteration 
of the dongle’s memory. Software vendors often use the 
memory to hold critical protection-related data. A de-
bugger can easily discover the dongle’s password, which 
potentially enables the attacker to change memory con-
tent or duplicate the dongle. This attack assumes the 
most favorable scenario for the attacker: access to both 
the copy-protected software and the dongle.

Emulate dongle. The attacker’s objective is to develop 
a software library that emulates dongle behavior. The 
signatures of the functions to be simulated are acces-
sible in the dongle vendor’s documentation; an array 
with read–write operations can emulate the dongle’s 
memory functionality. To discover the dongle’s ini-
tial content, attackers can either debug to capture the 
dongle’s passwords and use the vendor’s tools to access 
the data or run the emulator in “registration mode.”

Registration mode makes it possible to emulate 
memory functionality and analyze the way calls are 
made—for example, if the AES challenge sent to the 
dongle isn’t chosen randomly, the attacker can simply 
implement a challenge-response table built from the 
logs. If challenges are randomly generated, the attack-
er must discover the AES keys via reverse engineering 
(a more time-consuming process). Obfuscated code1 
and obfuscated cipher11 significantly increase the dis-
covery time. Assuming hackers have coded the fake li-
brary, they still need to divert the original library calls 
to the fake one. The difficulty of this step depends on 
how the protected software links to the dongle library 
(dynamically or statically).

Table 2. The attack pattern catalog with steps for 
each attack.

Attack patterns Steps
Remove checks (A) 1. Locate checks starting from error messages

2. Modify code with hexadecimal editor
Remove checks (B) 1. Locate checks starting from library calls

2. Modify code with hexadecimal editor
Memory tampering 1. Locate a library call

2. Debug to capture the clear password
3. Analyze and modify memory content

Patch at runtime (A) 1. Locate checks starting from error messages
2. Write script for patcher

Patch at runtime (B) 1. Locate checks starting from library calls
2. Write script for patcher

Emulate dongle 1. Debug to capture the AES keys
2. Develop the code for emulation library
3. Deviate calls of the original library to calls of the 
emulation library

Authorized licensed use limited to: California State University Fresno. Downloaded on October 16, 2008 at 09:38 from IEEE Xplore.  Restrictions apply.



Measuring Security

	 www.computer.org/security/       n      IEEE Security & Privacy� 37 

Experimental cost-to-break functions
The cost-to-break function’s goal isn’t to provide a 
precise, comprehensive measure of the cost to break 
a dongle—rather, it’s meant as a first approximation 
of a reasonably realistic time effort that a hacker with 
regular tools and resources needs to conduct a specific 
attack. In most cases of dongle-protected software, this 
is indeed appropriate. First approximation implies that as 
we gather more experience and knowledge about at-
tacks, we can improve our estimates (and the model).

Each function embeds empirical knowledge and 
estimates of the time effort required to perform a spe-
cific attack step. Function inputs are values assigned to 
defense pattern attributes. Each function is represented 
by a flow diagram that assigns and modifies the value 
of the time effort to execute the attack. The flow dia-
gram represents our knowledge of how to conduct an 
attack as well as our experimental knowledge of how 
difficult it is to perform a certain attack step, depend-
ing on defense attributes. 

In Figure 2, green boxes are function inputs, which 
include attributes of the defense patterns’ memory us-
age and proper error handling. These attributes’ val-
ues are used either as the base of conditional decisions 
or as direct values for the cost-to-break assignment. 
Conditions always include a “default” branch (the 
easiest for the attacker) to be taken whenever the at-
tribute value is unavailable.

We can interpret Figure 2 as follows. If error mes-
sages aren’t obfuscated, it’s trivial to find them in the 
executable code. Furthermore, if the error messages 
are close to the code in which the copy-protection 
logic is implemented, the attacker can counterfeit it. 
The total cost of locating all the code in which this 
logic is implemented is proportional to the number 
of checks in the code. Note, too, the assignment of 
the td value in the figure: in this case, as we gather 
through experience a better understanding of the re-
lationship between the attack effort and the distance 
of the check code from the error message, we could 
provide a more detailed flow to capture this relation-
ship without needing to manually assign a value. 

What if the defender obscures error messages? 
With the help of a debugger, attackers will be able 
to find where messages are de-obfuscated, but it will 
cost them 12 minutes. Where does this magic number 
come from? We set up a battery of test programs that 
implemented the defense patterns presented earlier and 
varied their attributes. We had 13 different executable 
test programs and applied a total of 55 attacks to them. 
More specifically, three of us (the three authors from 
Turin Polytechnic) acted as hackers and performed the 
attacks. We then measured the time each hacker needed 
to perform the attacks: the magic numbers here are the 
average times measured during these attack sessions. 

Some of the numbers, such as the 70 assigned when 
the time message remains shortly in clear at runtime, 
are arbitrarily assigned a reasonable value because we 
didn’t have data coming from this session. 

We limit the presentation of the experimental cost-
to-break functions to this attack example. A complete 
presentation appears elsewhere.6

Attack tree model
Our security model is based on attack trees.12 We ex-
tended the attack tree model by augmenting each leaf 
node with its corresponding experimental cost-to-
break function. Figure 3 shows the tree for our refer-
ence software. 

Given the augmented attack tree, we then collect 
all the values to be assigned to the defense pattern at-
tributes. Without manual inspection, we can run our 
extraction tool on some of these values and assign to 
the leaf nodes the output values of the experimental 
cost-to-break functions. The leaf values are propagat-
ed upward using the rule “OR nodes take the value 
of their cheapest child; AND nodes take the value of 

[Default: NO] [YES]

[custom]

[short]

[far]

[Default: standard]

[Default: long]

[Default: close]

[Nc]

6 < td <60
depending
from the
distance

t = 5

t = 12

t = 16t = 70

t = t + td

t = t × Nc

t = t + 5

Obfuscated error messages
(manual measurement)

Distance of check from
error handling (manual measurement)

Number of different caller addresses (Nc)
(automatic measurement)

Time message remains
in clear at runtime

(manual measurement)

Function used to show error
message (manual measurement)

Figure 2. Experimental cost-to-break function for the subattack “locate 
the checks starting from error messages.” t is the time effort in minutes to 
execute the attack. The green boxes are function inputs.
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the sum of their children” (AND nodes are connected 
through an arch).12 For the software in Figure 3, the 
security strength computed this way is 405, which 
means a hypothetical attacker would need 405 min-
utes to unprotect it, the “patch at runtime (B)” attack 
being the cheapest child of the tree’s root node.

We built tools for measuring some of the de-
fense pattern attributes and computing the security 
strength: 

The logger is meant to be hooked to the software 
under analysis and is implemented through a “fake” 
library in registration mode. After the registration 
sessions, we use the log file (detailing all the calls 
made) as input to the analyzer. 
The analyzer assigns values to attributes. Table 1 lists 
all the metrics defined for the defense patterns and 
whether the analyzer can measure them. The log 
mentioned earlier is used to infer values that can be 
derived from the software’s dynamic behavior. The 
values of attributes measured through static analysis 
are obtained by inspecting the binary files. 
Given an assignment of the defense pattern attribute 
values, our security strength computation tool computes 
the security strength estimation as the time a hacker 
would need to break the software.

We can learn many things from our tree model. 
Unlike other attack costs, for example, the “emulate 

•

•

•

dongle” cost-to-break function doesn’t depend on 
how much the AES challenge-response and memory 
usage defenses are scattered, so it establishes an upper 
limit on the security strength of 965 minutes. Even if 
we kept increasing the number of different caller ad-
dresses (Nc), we would reach a point at which this in-
crease becomes worthless (for this software, 96 caller 
addresses). Defenders therefore have to take into ac-
count an appropriate balance among the defenses ad-
opted—for example, if we seek strength greater than 
965 minutes, obfuscation must be used to strengthen 
the AES pattern. 

Suppose we want to achieve a strength of 10,000 
minutes (roughly 20 worker-days). What are the com-
binations of defense patterns we should implement? 
Through what-if experiments, we can change the de-
fense patterns and attributes and compute the resulting 
security strength. Combinations for 10,000-minute 
strength would require obfuscation to protect the AES 
defense pattern. Among these combinations, we have 
one in which we could raise Nc to have a value near 
1,000, but it seems time-consuming to implement 
so many checks in the code. Is there a more effective 
way? In a word, yes—we could expand the model to 
include the costs of implementing defenses and support 
the search of the best cost–benefit combination.

Field validation
To validate the methodology, we gathered five Italian 

Remove checks (A)

Remove checks (B)

Locate checks
starting from error messages

Locate checks
starting from error messages

Write script for patcher

Write script for patcher

Obfuscated error
messages: NO

Number of different
caller addresses Nc: 40

Modify code with hex editor

Modify code with hex editor

Locate checks
starting from library calls

Locate checks
starting from library calls

Patch at runtime (A)

Patch at runtime (B)

Develop code for emulation DLL

Debug to capture AES keys

Deviate calls to the emulation library

Emulate dongle

Break copy protection

“Locate checks” experimental
cost-to-break function

…

t = 680

t = 400

t = 280

t = 160

t = 280

t = 645

t = 405
t = 130

t = 715

t = 120

t = 405

t = 965

t = 400

t = 245

t = 160

t = 245

t = 440

Figure 3. Augmented attack tree. For space reasons, only the first top leaf node is shown augmented with its associated experimental 
cost-to-break function (t is the time effort in minutes to execute the attack). The t value of the other leaf nodes is the output of the 
experimental cost-to-break function associated with each node, given the attribute values of defense patterns on which they depend. 
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commercial software packages protected by Eutron-
sec’s dongles (from S1 to S5 in Table 3). They aren’t 
detailed further because of privacy reasons. We used 
only binaries and dongles as input for this validation, 
but we considered additional test software (T in Table 
3) that we developed as a reference point. This refer-
ence software implements only the AES pattern—the 
attacker is supposed to have the dongle and can there-
fore easily discover its memory content. The last two 
rows in the table report the estimated security strength 
and the actual cracking time in minutes.

For each piece of software, we logged the data 
through the logger, measured the values for the de-
fense pattern attributes through the analyzer, comput-
ed the security strength, and hacked the software and 
recorded the time needed to crack it (see Table 3). 

It was amazingly easy to crack all five commer-
cial software applications. The estimated security 
strengths reflect this by assigning values comparable 
to measured cracking times. 

Although the evidence in Table 3 is insufficient to 
claim that our proposed model provides a good model 
of the security strength in dongle-protected software, 
we believe these initial results are encouraging. A fur-
ther indication of our model’s value is that it moves the 
ability to reason about security into a domain that can 
be numerically ranked—for example, we can prove 
that 965 minutes is the upper bound for the security 
strength of software that doesn’t use obfuscated AES.

Yet, we experienced some limitations:

We had low variability in the complexity of the im-
plemented copy-protection schemes, as all the five 
software have low security strength. However, the 
reference test software seems to indicate that the ap-
proach can pick up increasing levels of protection.
The sample of software analyzed might be too small 
(it wasn’t possible to gather additional commercial 
software). 

•

•

We considered only a minimal set of defense attri-
butes; more of them should be added (for example, 
anti-debugging techniques for the code obfuscation 
defense).

We could argue that the poor protection we ob-
served was due to vendor-specific issues (Eutronsec’s 
dongles might have a poor baseline level of security, 
for example). Although we can argue that this is un-
likely because the architecture for dongle protection is 
identical among most vendors, we performed attacks 
on two commercial software applications sold world-
wide from US (U) and European (E) companies. 
Both were protected by dongles from another major 
vendor, but software U was easily cracked. Software 
E resisted our one-day effort; our reverse-engineering 
analysis discovered that the defenses presented here 
were implemented in the proper way.

The steps in our approach are generic, so our 
methodology could also apply to other security fields, 
including Web applications.13,14 It requires explicitly 
defined attributes that can be associated to Web ap-
plication defenses patterns (such as sanitized inputs, 
idle time for session time-out, and delay between us-
ers submitting login credentials and success or fail-
ure response). We would then need to link together 
defense and attack patterns by building the experi-
mental cost-to-break functions and the augmented at-
tack tree models. Comprehensive tools for automatic 
metric estimation are probably difficult to build; you 
could start with the simpler-to-implement attribute 
measurements and involve architects or developers to 
estimate the more complex attributes.

O ur field validation seems to confirm the hacker 
belief that “software developers who use [don-

gles] usually aren’t [...] motivated [...], they assume 
that because they are using a dongle that will be de-

•

Table 3. Values assigned to defense pattern attributes for analyzed software. 

Defense patterns and attributes S1 S2 S3 S4 S5 T
AES challenge-response
Number of different caller addresses 1 0 1 0 1 40
Random challenge distribution no n/a no n/a no yes
Number of AES keys n/a n/a n/a n/a n/a 20
Memory usage
Number of different caller addresses 2 1 1 2 1 0
Static link to dongle library
Link type dyn dyn static static static static
Code obfuscation
Obfuscated arguments of calls to dongle API yes yes yes yes yes yes
Estimated security strength (min) 53 22 49 39 66 405
Actual cracking time (min) 70 35 65 50 80 320
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terrent enough [...]” (www.woodmann.com/crackz/
Dongles.htm). We shouldn’t just blame software de-
velopers, though—if we want better security, dongle 
technology must be usable in a secure way. The mod-
els and tools described here address this responsibility. 
Before security testing, our methodology lets devel-
opers rank strength; during development, it supports 
what-if experiments, to help predict strength with a 
particular combination of defenses.

Further progress remains to be done. We envis-
age an extension to our current model that identi-
fies the easiest-to-implement combination of defense 
patterns and the associated attributes to reach it, giv-
en the desired software strength. We’ve speculated 
that our methodology to monetize security strength 
might be applied to other realms, such as Web ap-
plications. Showing that this is indeed possible is an-
other future challenge. 
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